Selamat Datang di Laman Yudi Handayana

Belajar bersama Yudi Handayana

Make one step and never Back

Berjalan pelan asal tetap ke depan

Rabu, 20 Desember 2017

Lecture Video Kalkulus MIT

Kalkulus merupakan matematika paling dasar yang dibutuhkan bagi seorang fisikawan, dan tentu saja matematikawan. Bagi sebagian besar fisikawan, matematika merupakan tujuan yang mesti dicapai dalam memahami alam. Ingin belajar banyak tentang kalkulus? Tonton dan download video perkuliahan kalkulus di MIT.

Calculus 1 Lecture 0.1: Lines, Angle of Inclination, and the Distance Formula
Calculus 1 Lecture 0.2: Introduction to Functions
Calculus 1 Lecture 0.3: Review of Trigonometry and Graphing Trigonometric Functions
Calculus 1 Lecture 0.4: Combining and Composition of Functions
Calculus 1 Lecture 1.1: An Introduction to Limits
Calculus 1 Lecture 1.2: Properties of Limits. Techniques of Limit Computation
Calculus 1 Lecture 1.3: Techniques of Limit Computation
Calculus 1 Lecture 1.4: Continuity of Functions
Calculus 1 Lecture 1.5: Slope of a Curve, Velocity, and Rates of Change


Melihat dari kuliahnya, Prof. Leonard menggunakan Buku E. J. Purcell yang bisa di download disini
Untuk bisa membaca file buku pdf atau djvu, bisa di download disini

Lecture Video Termodinamika MIT

Termodinamika merupakan topik dalam fisika yang mengkaji tentang panas dan segala konsekuensinya. Mobil atau motor yang kalian naiki semuanya menggunakan konsep termodinamika. Ingin belajar banyak tentang termodinamika? Tonton dan download video perkuliahan termodinamika di MIT.

Klik disini


Untuk bisa membaca file buku pdf atau djvu, bisa di download disini

Selasa, 19 Desember 2017

Teori vs Eksperimen

Fisika merupakan upaya menemukan pola-pola keteraturan alam dan membingkainya menjadi bagan berpikir yang runtut, yakni berupa kaitan logis antara konsep-konsep tertentu. Bagan bepikir tentang pola-pola keteraturan alamiah itu disebut t e o r i. Jadi, fisika adalah upaya membangun teori tentang gejala-gejala alamiah. Bagan berpikir itu secara matematis disajikan sebagai kaitan-kaitan matematis yang menghubungkan struktur-struktur matematis yang mewakili konsepkonsep tertentu, semisal besaran, parameter, dll. Oleh karena itu, konsep-konsep pun bermunculan sesuai kebutuhan. Jadi, ilmu fisika berusaha menemukan pola-pola keteraturan tersebut dan membingkainya dalam suatu rumusan matematis. Yang diusahakan adalah mendapatkan gambaran matematis maksimal, yakni persamaan matematis yang paling tepat dan yang memiliki jangkauan paling luas dalam menjelaskan keteraturan alam. Walaupun tidak ada kesepakatan secara formal namun telah berkembang keyakinan secara luas bahwa pola-pola keteraturan alam itu paling baik apabila dimodelkan atau disajikan dalam bentuk pola-pola matematis yang berupa persamaan ataupun grafik.

Untuk apa sebuah teori disusun? Holton dan Brush menggambarkannya dengan keberadaan sebuah gunung atau pulau es yang terapung di permukaan air laut. Bagian es yang berada di bawah permukaan air laut (oleh karena itu tidak kelihatan) jauh lebih besar jika dibandingkan dengan yang tampak di atas permukaan air laut. Tujuan sebuah teori adalah menjelaskan seluk-beluk, sifat-sifat, dan perilaku gunung es itu secara keseluruhan termasuk bagian pulau es yang tersembunyi di bawah permukaan air laut itu dengan berbekal pengetahuan tentang seluk-beluk, sifat-sifat, dan perilaku bagian yang tampak di permukaan air laut. Secara rinci sebuah teori diharapkan mampu untuk (i) menghubungkan berbagai fakta yang terpisah dalam suatu bagan berpikir yang logis dan mudah ditangkap, (ii) memberikan gambaran tentang kaitan-kaitan baru, yakni mampu menjelaskan kaitan antara fakta-fakta lama dan fakta-fakta baru, (iii) memberikan prakiraan (prediksi) gejala-gejala alamiah baru, dan memberikan penjelasan bagi gejala-gejala alamiah yang telah teramati, (iv) menuntun dalam penyelesaian masalah-masalah praktis.

Untuk mewujudkan obsesi tersebut, sebagian fisikawan yang masyhur disebut fisikawan teoretis berusaha menyusun model-model hukum alam dengan memanfaatkan kaidah-kaidah matematis. Bagan berpikir yang runtut itu akan dimodelkan dengan objek-objek matematis dan kaitan antara objek-objek itu. Penyusunan model-model ini tidak boleh sembarangan. Penyusunan ini haruslah didasarkan pada data-data hasil eksperimen (percobaan) atau pengamatan yang telah dihasilkan oleh sebagian fisikawan yang dikenal sebagai fisikawan eksperimental. 

Model hukum alam yang diusulkan, tentu saja, tidak mungkin identik dengan hukum atau pola-pola keteraturan alam yang sesungguhnya (yakni yang dimodelkannya), melainkan hanya sekedar pendekatan semata. Oleh karena itu, diperlukan ukuran apakah model-model yang diusulkan diterima atau ditolak. Ukuran tersebut haruslah terkait dengan kesesuaian model-model tersebut dengan perilaku alam yang yang diwakilinya. Model yang paling sesuai dengan perilaku alam merupakan model yang paling diterima. Selain dituntut untuk mampu menjelaskan hasil-hasil eksperimen yang telah dilakukan, model yang diusulkan dituntut pula mampu meramalkan hasil-hasil eksperimen yang akan dilakukan. Jadi, semakin banyak hasil eksperimen yang dapat dijelaskan dan diramalkan secara tepat oleh suatu model, maka model tersebut semakin diterima. Oleh karena itu, dapatlah dikatakan bahwa eksperimen merupakan ‘hakim’ dalam fisika (sains pada umumnya), yakni menentukan apakah suatu model matematis diterima ataukah ditolak. Akan tetapi, walaupun suatu model telah mampu memainkan peran tersebut secara memuaskan, ia terpaksa harus pula ditinggalkan atau paling tidak diperbaiki apabila terdapat paling sedikit sebuah eksperimen yang tidak mampu dijelaskan atau diramalkan olehnya. 

Jadi, tidak ada model hukum alam yang diterima secara langgeng. Albert Einstein, mengatakan, “No number of experiments can prove me right; a single experiment can prove me wrong.“ Jadi, seribu macam eksperimen yang mendukung kebenaran suatu teori atau model belumlah cukup untuk menyatakan bahwa teori itu benar, tetapi sebuah eksperimen saja (sekali lagi, hanya sebuah eksperimen saja) telah mencukupi untuk menggugurkan suatu teori atau model manakala hasil-hasil eksperimen tersebut sama sekali tidak mampu dijelaskan oleh suatu teori atau model. Sebuah teori yang disusun secara induktif (teori sains) tidak akan pernah dapat dibuktikan kebenarannya. Justru sebaliknya, yang mungkin dapat dibuktikan dari suatu teori sains adalah kesalahannya, yakni ketika salah satu prediksinya tidak sesuai dengan hasil eksperimen atau pengamatan. Hal ini mudah dipahami mengingat tidak semua kasus yang mungkin terjadi dapat diamati.

Jadi, model-model yang masih lolos dari penolakan akan terus bertahan, sedangkan yang telah gagal perlu diperbaiki atau ditinggalkan sama sekali. Model-model yang masih lolos uji perlu digabungkan sehingga didapatkan model-model yang memiliki jangkauan (domain) yang lebih luas. Selanjutnya, model-model hasil penggabungan kemudian harus diuji lagi dengan eksperimen-eksperimen. Sekali lagi, yang masih lolos akan bertahan, yang gagal diperbaiki atau ditinggalkan. Proses semacam ini berlangsung terus-menerus. Lalu, kapan akan berakhir? Jawabnya : tiada akan berakhir. Kehebatan sebuah teori atau model diukur dari kemampuannya bertahan dari upaya penolakan melalui eksperimen-eksperimen. Semakin banyak eksperimen yang gagal membuktikan kesalahan sebuah teori, semakin meyakinkan teori itu. Akan tetapi, tetap saja, bahwa teori itu tidak akan pernah terbukti kebenarannya.


I Gusti Ngurah Yudi Handayana
Sumber: Rosyid, M. F., et. al. 2014. Fisika Dasar Jilid 1

Senin, 18 Desember 2017

Fisika : Upaya Memahami Alam



Pandangilah langit di malam hari. Jika Anda tinggal di tempat yang jauh dari keramaian kota, maka Anda akan terpana oleh kerlap-kerlip tebaran bintang-gemintang di langit. Itulah Bimasakti. Seakan-akan bintang-bintang itu tersebar dan mengambil tempat sekenanya di sana. Tetapi, ketika Friedrich Wilhelm Herschel tahun 1789 memiliki teropong yang cukup kuat (dengan cermin utama berdiameter 1,26 m dan titik api sejauh 12 m) dan bersemangat meluangkan waktunya untuk mencermati sebaran bintang-bintang, ternyata bintang-bintang itu tidaklah mengambil tempat sekenanya. Terdapat pola-pola yang diikuti oleh bintang-bintang untuk menempatkan diri. Kini kita menyadari bahwa Bimasakti berbentuk spiral dan Bimasakti bukan keseluruhan alam semesta kita. Bimasakti hanyalah satu dari sekian ratus milyar galaksi yang ada di alam semesta. Kebanyakan galaksi memiliki bangun spiral. Ada beberapa jenis spiral yang menjadi bentuk galaksi-galaksi itu. Sekarang diketahui pula bahwa galaksi-galaksi bergerak saling menjauh. Besar kecepatan surut galaksi itu ternyata diketahui berbanding lurus dengan jarak antara galaksi. Jadi, alam semesta mengembang.



Virus adalah penyebab infeksi penyakit yang sangat kecil dan berbiak hanya dalam sel-sel makhluk hidup yang lain. Virus dapat menginfeksi segala bentuk kehidupan. Manusia mengenal virus pertama kali melalui Dmitri Ivanovsky pada tahun 1892, yakni dalam sebuah artikelnya yang menggambarkan penyebab penyakit nonbakterial pada tanaman tembakau. Selanjutnya, Martinus Bejjerinck menemukan virus mosaic pada daun tembakau di tahun 1898. Virus secara umum tersusun atas tiga hal. Yang pertama adalah material genetik (DNA atau RNA), yang kedua adalah mantel protein, dan yang ketiga adalah bungkus lemak (lipids). Kenyataan yang menarik tentang virus-virus yang telah ditemukan oleh para ilmuwan adalah bahwa bangun tubuh virus-virus itu memiliki kesetangkupan (simetri) terhadap perputaranperputaran yang dikenal dengan kesetangkupan icosahedral. Jadi, bangun geometri tubuh virus memiliki kesetangkupan tingkat tinggi.



Begitu pula dengan penampakan berbagai bunga salju, mulai dari yang sederhana hingga yang sangat rumit. Dalam pembentukan kristal-kristal air ini terlihat dengan jelas bahwa molekul-molekul air tidak menempatkan diri sekenanya. Mereka tunduk pada pola-pola yang mengatur posisi mereka masing-masing. Bunga-bunga salju itu memiliki kesetangkupan baku tertentu, yakni terhadap perputaran dengan sudut 60 derajat. Secara teknis kesetangkupan semacam ini disebut kesetangkupan lipat enam. Pola-pola yang mengatur posisi molekul air itu telah diketahui, dan bergantung pada temperatur dan kelembaban udara di sekitar tempat pembentukan kristal itu. Molekul-molekul airpun ternyata mengenal geometri tingkat tinggi.

Bintik-bintik Matahari (sun spots) adalah gejala penarikan wilayah-wilayah terbatas pada permukaan fotosfer oleh gejolak medan magnet setempat. Akibatnya, pada wilayah itu temperatur sedikit mengalami penurunan jika dibandingkan dengan wilayah lain di sekitarnya. Dengan demikian, wilayah yang mengalami penurunan temperatur itu tampak lebih gelap jika dibandingkan dengan wilayah di sekitarnya. Hal ini mudah dipahami dari gejala radiasi termal. Bintik-bintik Matahari merupakan indikator bagi aktivitas Matahari. Semakin luas wilayah bintik Matahari, semakin tinggi aktivitas Matahari.

Dari beberapa contoh gejala alam yang diungkapkan di atas tersirat adanya keteraturan. Tampak  dengan nyata bahwa gejala-gejala atau peristiwa-peristiwa di alam ini memiliki pola-pola tertentu. Oleh karena itu, tidak salah jika kemudian Anda menyimpulkan dan meyakini bahwa alam ini diciptakan sebagai suatu keselarasan (harmoni) yang memiliki pola-pola keteraturan. Walaupun gejala-gejala alamiah sering terlihat terjadi secara acak, namun tetap saja sesungguhnya adalah acak
yang teratur. Ada keteraturan dalam keacakan.

Sekarang marilah kita merenung sejenak. Mungkinkah akan terasa nyaman andaikata kita mampu mengetahui kaidah-kaidah atau pola-pola yang dianut oleh setiap gejala alamiah dalam setiap rinciannya. Dengan panduan kaidah-kaidah itu kita dapat meramalkan segala sesuatunya. Dari hasil ramalan itu, kita dapat mengambil tindakan yang memadai agar kita mendapat keuntungan ataupun menghindar dari kerugian. Boleh jadi, hidup kita akan terasalebih mudah. Sesuatunya akan tampak pasti, jauh dari kegalauan dan kegundahan. Atau mungkin malah sebaliknya, dengan kepastian semacam itu hidup kita justru terasa sulit, tidak pernah tenang dan selalu dalam kesedihan sebagaimana seorang narapidana yang telah mendapat kepastian kapan akan dihukum mati. Akan tetapi, terlepas dari kemungkinan-kemungkinan semacam itu, cita-cita ilmu fisika hanyalah menemukan kaidah-kaidah atau pola-pola yang sering disebut hukum alam itu.

Fisika merupakan upaya menemukan pola-pola keteraturan alam dan membingkainya menjadi bagan berpikir yang runtut, yakni berupa kaitan logis antara konsep-konsep tertentu. Bagan bepikir tentang pola-pola keteraturan alamiah itu disebut t e o r i. Jadi, fisika adalah upaya membangun teori tentang gejala-gejala alamiah. Bagan berpikir itu secara matematis disajikan sebagai kaitan-kaitan matematis yang menghubungkan struktur-struktur matematis yang mewakili konsep-konsep tertentu, semisal besaran, parameter, dll. Oleh karena itu, konsep-konsep pun bermunculan sesuai kebutuhan. Jadi, ilmu fisika berusaha menemukan pola-pola keteraturan tersebut dan membingkainya dalam suatu rumusan matematis. Yang diusahakan adalah mendapatkan gambaran matematis maksimal, yakni persamaan matematis yang paling tepat dan yang memiliki jangkauan paling luas dalam menjelaskan keteraturan alam. Walaupun tidak ada kesepakatan secara formal namun telah berkembang keyakinan secara luas bahwa pola-pola keteraturan alam itu paling baik apabila dimodelkan atau disajikan dalam bentuk pola-pola matematis yang berupa persamaan ataupun grafik.


I Gusti Ngurah Yudi Handayana
Sumber : Rosyid, M. F., et. al. 2014. Fisika Dasar Jilid 1